

Massachusetts Institute of Technology

Introduction

What is a One-Dimensional Convolution?

$$y[n] = x[n] * h[n] = \sum x[k]h[n -$$

 $+\infty$

 $k = -\infty$ What is a Two-Dimensional Convolution?

$$y[m,n] = x[m,n] * k[m,n] =$$

k[i,j]x[m-i,n-j]

Applications of Discrete Time Convolutions:

Signal Processing	 Image Processing
Cound	Dettern and Edge D

Sound

What is an Accelerator?

• Highly optimized hardware accelerators are capable of increasing performance on very specific computational tasks by large factors over sequential instructions. These accelerators are often optimized for high performance and instructions per clock cycle.

One-Dimensional and Two-Dimensional Applications:

• Ideal for IoT and small devices to provide significant performance gains over sequential computations and flexibility over application-specific accelerators such as CNN accelerators.

Implementation

Board

Bluespec System Verilog (BSV) has been used to develop the accelerator by implementing pipelined Full Binary/3D Tree structures.

- Bluespec Verilog Design
- Three-stage pipelined RISC-V processor
- Complete accelerator-memory interaction

22,661

	Results		
Input Matrix Dimensions	Sequential Clock Cycle Count	Accelerator Clock Cy Count	
1x100	10,486	204	
1X1000	107,686	2,007	
1X10000	1,079,686	20,010	
Table 1. One Dimensional Convolution: 1x4 Kernel			
Input Matrix Dimensions	Sequential Clock Cycle Count	Accelerator Clock Cyc Count	
15x15	70,747	657	
30x30	249,802	2,248	

2,531,242

Table 2. Two Dimensional Convolution: 3x3 Kernel

100x100

Optimizing 1D and 2D Convolution Accelerators for UC San Diego Area, Energy, and Flexibility **JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering**

David Paz¹, Andy Wright²

Advisor – Prof. Arvind²

¹Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA ²Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA

One-Dimensional Accelerator Two-Dimensional Accelerator $x[n] = [X_0 \quad X_1 \quad X_2 \quad X_3 \quad \dots \quad X_n]$ $k[n] = \begin{bmatrix} K_0 & K_1 & K_2 & K_3 \end{bmatrix}$ $Y_0 = K_3 * X_0 + K_2 * X_1 + K_1 * X_2 + K_0 * X_3$ $X_{1,3} \dots X_{0,n}$ $\Lambda_{0,3} \cdots \Lambda_{0,n}$ **л**0,0 X_{0,1} A 2,0 Register ۲ Adder Register Adder Multiplier () Multiplier Kernel Register Kernel Register Input Stream Register Input Stream Register $Y_{2,2}$ y[m+1, n+1] =Figure 2. Two Dimensional – 3D Tree structure 2D Accelerator Wrapper 1D Accelerator Wrapper

